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ABSTRACT: Iron-catalyzed oxidative α-cyanations at tertiary
allylamines in the allylic position are followed by anti-
Markovnikov additions of alcohols across the vinylic CC
double bonds of the initially generated α-amino nitriles. These
consecutive reactions generate 2-amino-4-alkoxybutanenitriles
from three reactants (allylamines, trimethylsilyl cyanide, and alcohols) in one reaction vessel at ambient temperature.

Additions to alkenes are atom-economic reactions that are
used by synthetic chemists in academia and industry to

introduce a broad variety of functional groups into hydro-
carbons.1 However, only a limited number of methods exist so
far for anti-Markovnikov additions of alcohols to simple
aliphatic olefins. Arnold studied the photosensitized generation
of alkene radical cations,2 which were trapped with alcohols to
provide anti-Markovnikov adducts.3 Since then, only a few
related examples for photochemically induced anti-Markovni-
kov alcohol additions have been reported, all of which use 1-
aryl- or 1,1-diarylalkenes as reaction partners (Scheme 1a).4−6

General methods for intermolecular anti-Markovnikov hydro-
alkoxylations under mild and practical conditions are still
lacking because of a shortage of applicable catalytic processes,7

in particular with catalysts based on earth-abundant elements
such as iron.8−10

According to the methylenology principle,11 Michael
additions of alcohols at intrinsically nucleophilic CC double
bonds could be mediated by linking the electron-rich π-system
with an electron-accepting group through a radical center. As
C-centered radicals are efficiently stabilized by captodative
effects,12 vinyl-substituted α-amino nitriles would be ideal
substrates for testing this approach.
The introduction of nitrile groups at C−H bonds adjacent to

the nitrogen of tertiary amines has recently been achieved with
several catalyst-oxidant combinations and various cyanide
sources.13−15 Hence, allylamines may serve as potential
precursors for vinyl-substituted α-amino nitriles. Indeed, it
has been reported that allylamines can be used in oxidative α-
cyanations under various conditions16,17 (Scheme 1b). The few
examples show, however, that oxidation occurs preferentially at
aliphatic or benzylic α-positions of the amines,17a−c and only
Mizuno and co-workers detected small amounts of α-cyanated
products that originated from reaction at the allyl group.17d,18

In recent years, we have developed iron-catalyzed oxidative
α-cyanations of a variety of tertiary amines.19,20 Here, we report
that FeCl2-catalyzed direct α-cyanations at tertiary allylamines
in the allylic position are followed by anti-Markovnikov
additions of alcohols across the vinylic CC double bonds of
the initially generated α-amino nitriles (Scheme 1c).
Monitoring the oxidative cyanation of N,N-diallylaniline 1a

under our standard conditions in methanol [10 mol % FeCl2, 2
equiv of Me3SiCN, 2.5 equiv of tBuOOH (5.5 M in decane), dry
N2 atmosphere, ambient temperature]19c,21 by GC−MS
indicated that significant amounts of the α-cyanation product
2a accumulated in the reaction mixture only during the initial
phase of the reaction. The cyanation product 2a was
accompanied by the generation of compounds with a molecular
mass of 2a·MeOH. While 2a was isolated in low yield (21%)
when the reaction was worked-up after 4 h reaction time, the
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Scheme 1. Direct Anti-Markovnikov Additions of Alcohols
to Alkenesa and Oxidative α-Cyanations of Allylamines

aSET, single electron transfer; HAT, hydrogen atom transfer. bFor
reaction conditions, see notes in ref 17.
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product of the addition of methanol to 2a was obtained in 86%
yield after 16 h (Scheme 2). 2D-NMR spectroscopic character-

ization of 2a·MeOH showed the presence of a terminal
methoxy group, in agreement with structure 3a. N,N-Diallylani-
lines 1b,c with electron donating p-methyl (σp = −0.17)22 or p-
methoxy substituents (σp

− = −0.27)22 at the phenyl rings
analogously gave 2-anilino-4-methoxybutanenitriles 3b,c in
yields of 85% and 93%, respectively. The electron-withdrawing
p-bromo-substituted aniline 1d (σp

−(Br) = 0.25)22 gave 3d in a
moderate yield of 67%.
Changing the solvent from CH3OH to CD3OD for the

reaction of 1a under otherwise identical conditions of Scheme 2
yielded the d3-methyl ether 3a′ in 88% yield.

While the 1H and 13C NMR spectra of 3a′ indicate a
quantitative OCD3 incorporation, the methylene group at C3 of
the 4-methoxybutanenitrile branch shows a ca. 42% uptake of D
(see Supporting Information). Because of fast H/D exchange
between CD3OD and tBuOOH under the conditions applied, it
is presently not possible to unequivocally assign the source of
the H or D that adds to the C3 position.
To rationalize the selective anti-Markovnikov addition of

methanol, we suggest that iron-catalyzed oxidation converts the
allyl-substituted amines A into α,β-unsaturated iminium ions B,
which are then trapped by kinetically controlled attack of
cyanide ions at the iminium carbon (Scheme 3).23 Further
oxidation of the intermediate α-amino nitriles C generates the
donor/acceptor-substituted radicals D, which enter a radical
chain reaction. In accord with the methylenology principle,11

radicals D show reactivity comparable to the π-electron-
deficient acrylonitriles. Therefore, Michael-type addition of
alcohols to the terminal C-4 may generate intermediates E, in
which the negative charge is delocalized and efficiently
stabilized by the electron-withdrawing cyano group. Fast
proton transfer converts E to radicals F, which benefit from
captodative stabilization.12 Deuteration at C2 in product 3a′
was not observed (see above). Therefore, we conclude that O−
H of tBuOOH or C−H of methanol do not act as hydrogen
atom donors toward radicals F. The catalytic cycle may be
closed, however, by direct or indirect hydrogen atom transfer24

from α-amino nitriles C to radicals F to generate the final
products G as well as the radicals D that take part in the next
cycle of the radical chain reaction. On the basis of the quantum-

chemically calculated radical stabilization energies (RSEs),25

transfer of a hydrogen atom from C to radical F is
thermodynamically feasible and exothermic by 38 kJ mol−1

(in the gas phase, for details see Supporting Information).
Both radicals D and F involved in the proposed catalytic

cycle are unusually stable in absolute terms, which implies weak
C−H bonds in the closed shell parent systems C and G. On the
basis of bond dissociation energies (BDEs), the relevant C−H
bond of 2a (+310 kJ/mol) is slightly weaker than that of 2-
phenylmalononitrile (+322 ± 4 kJ/mol, from ref 26), which
was successfully used as the H atom donor in intramolecular
anti-Markovnikov hydroetherifications.5g,6a The relevant C−H
bond of 2a is also weaker than in reaction product 3a (+348 kJ/
mol) and much weaker than the allylic C−H bond in propene
(+369 kJ/mol)27 or the α−C-H bond in the glycine-derivative
(+364 kJ/mol) depicted in Figure 1.25,28 Interestingly, the α−
C-H bond in 3a is of comparable strength as the O−H bond in
tBuOOH (BDE = +353 ± 9 kJ/mol, from ref 29).

When ethanol was used as the solvent instead of methanol,
the 4-ethoxy-substituted 2-aminobutanenitrile 4 (68%) was
obtained from 1a by the cyanation/hydroalkoxylation sequence
(Scheme 4). Ethyl ether 4 was accompanied by the 2-
aminopropanenitrile 5 (31% isolated yield), whose formation
is rationalized in analogy to the previously described oxidative
dealkylation/cyanomethylation of N,N-dialkylanilines in meth-
anol:19c Oxidative degradation of 1a via hydrolysis of the
intermediate α,β-unsaturated iminium ions forms N-allylaniline,
which condenses with acetaldehyde, generated by oxidation of
the solvent ethanol,30 to yield iminium ions, which are finally
trapped by cyanide to yield 5 (Scheme 4).
Reactions with N-allyl-N-ethylaniline (6a) and triallylamine

(9) showed that the scope of the oxidative α-cyanation/-
hydroalkoxylation can be extended to mono- and triallyl-

Scheme 2. Sequential Oxidative Cyanation/Hydro-
alkoxylation of N,N-Diallylanilines 1a−da

aYields refer to isolated products after chromatographic purification.

Scheme 3. Suggested Mechanism for the Oxidative C1-
Cyanation of the N-Allyl Group with Subsequent Anti-
Markovnikov Hydroalkoxylation

Figure 1. Comparison of C−H bond dissociation energies (BDEs) in
α-amino nitriles 2a and 3a with those in structurally analogous
compounds and in 2-phenylmalononitrile.
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substituted amines (Scheme 5). Preferred cyanation of the
NMe group of N-allyl-N-methylaniline (6b) to yield the α-
amino nitrile 8 is in agreement with previous reports17b−d and
allows one to derive the reactivity order NMe > N-allyl > NEt
for the regioselectivity of these oxidative α-functionalizations of
N,N-disubstituted anilines. This reactivity order differs from
Lambert’s observation of a preferred hydride transfer from the
aliphatic group of allyl-diisobutylamine to tropylium ions.17a

Our reactivity order also differs from that for relative rates for
the deprotonation of laser-flash photolytically generated amine
radical cations by acetate, krel = 2.7 (N-allyl) > 1 (NMe) > 0.24
(NEt), which were explained by stereoelectronic effects in the
preferred transition state conformation.31 One consequence of
the chemoselectivity NMe > N-allyl of the oxidative
functionalization step is that this preference makes NMe
groups in tertiary amines incompatible with the α-cyanation/
anti-Markovnikov hydroalkoxylation sequence because the α-
cyanation is directed to the N-methyl group. Whereas a 7-fold
preference for N-benzyl over N-allyl reactivity was found by
Mizuno,17d we succeeded in preparing methyl ether 12 from
N,N-diallylbenzylamine 11 under our reaction conditions.
In conclusion, an iron-catalyzed α-cyanation of tertiary

allylamines has been developed that is coupled with a
subsequent chemo- and regioselective addition of alcohols to

the π-system of the vinyl-substituted α-amino nitrile
intermediate. Thus, this reaction combines three components32

in one pot to yield 2-amino-4-alkoxybutanenitriles under mild
conditions. Such ether-functionalized α-amino nitriles may
further extend the rich synthetic versatility of α-amino nitriles.33

Detailed studies of the mechanism including further character-
ization of highly stabilized radicals of structural type D, as well
as broadening the scope of this novel type of anti-Markovnikov
hydroalkoxylation are currently underway.
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